[1506.08190] Conventional superconductivity at 203 K at high pressures

Abstract: A superconductor is a material that can conduct electricity with no resistance below its critical temperature (Tc). The highest Tc that has been achieved in cuprates1 is 133 K at ambient pressure2 and 164 K at high pressures3. As the nature of superconductivity in these materials has still not been explained, the prospects for a higher Tc are not clear. In contrast, the Bardeen-Cooper-Schrieffer (BCS) theory gives a guide for achieving high Tc and does not put bounds on Tc, all that is needed is a favorable combination of high frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen4,5. Numerous calculations support this idea and predict Tc of 50-235 K for many hydrides6 but only moderate Tc=17 K has been observed experimentally7. Here we studied sulfur hydride8 where a Tc~80 K was predicted9. We found that it transforms to a metal at pressure ~90 GPa. With cooling superconductivity was found deduced from a sharp drop of the resistivity to zero and a decrease of Tc with magnetic field. The pronounce isotope shift of Tc in D2S is evidence of an electron-phonon mechanism of superconductivity that is consistent with the BCS scenario. The superconductivity has been confirmed by magnetic susceptibility measurements with Tc=203K. The high Tc superconductivity most likely is due to H3S which is formed from H2S under its decomposition under pressure. Even higher Tc, room temperature superconductivity, can be expected in other hydrogen-based materials since hydrogen atoms provide the high frequency phonon modes as well as the strong electron-phonon coupling.
Subjects: Superconductivity (cond-mat.supr-con); Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:1506.08190 [cond-mat.supr-con]
  (or arXiv:1506.08190v1 [cond-mat.supr-con] for this version)

From: Mikhail Eremets [

view email

]


[v1]

Fri, 26 Jun 2015 19:48:46 GMT (1669kb)